Neuroethology of olfaction "NeO" Team - iEES Paris

Our experimental and modelling studies aim at understanding the mechanisms involved in the recognition of the olfactory signal and its translation in a behavioural response adapted to the environment and the physiological state of insects.
These studies concern the processes of sensory coding, from the chemo-electrical transduction in the olfactory receptor neurones to its integration in the central nervous system by the neuronal network of the antennal lobe as well as the resulting oriented locomotor response.

We also analyse how insects respond to specific signals in a complex sensory environment (interactions of pheromones and plant volatile compounds) and the mechanisms of the modulation of the olfactory response, notably by steroid hormones involved in development.

carte d’activité en imagerie calcique du lobe antennaire à un composé volatil de plante et à la phréromone
Calcium activity maps in the antennal lobe in response to a volatile plant compound and to the sex pheromone – N. Deisig©UMR7618

We use complementary approaches including:

  • anatomy (quantitative neuroanatomy, intracellular stainings),
  • molecular biology (cloning, in situ hybridization, RNA interference, heterologous expression),
  • electrophysiology (extracellular, patch clamp in vivo and in vitro),
  • imaging (calcium imaging), ethology (olfactometry, trajectometry, learning assays),
  • biochemistry (immuno-dosage of steroids), physico-chemistry (gas chromatography coupled to behaviour)
  • and modelling (statistical analyses, computer simulation, robotics) to study the functioning of neurones and neurone networks and modifications of this functioning (global change, pesticides, etc.).

Various olfactometers, locomotion compensators and a wind tunnel are used to record and analyse insect behavior in response to odour signals.

Moth olfactory receptor neurones in primary culture
Moth olfactory receptor neurones in primary culture, P. Lucas©UMR7618

Patch clamp from an olfactory receptor neurone in vitro
Patch clamp from an olfactory receptor neurone in vitro, P. Lucas ©UMR7618
Reconstruction of the antennal lobe from a male moth
Reconstruction of the antennal lobe from a male moth S. Anton©UMR7618 S. Anton©UMR7618
Our studies are carried out on three species of phytophagous insects.

Our main model is the moth sex pheromone communication with two Noctuidae Spodoptera littoralis and Agrotis ipsilon, because of its sensitivity, specificity and stereotyped behavioural responses involved.
Responses to the pheromone in interaction with plant volatiles are also studied in the context of an applied project, on the invasive weevil Rhynchophorus ferrugineus.

A male moth needs to recognize the female-released sex pheromone among a complex background of odours which can also have a meaning for it
A male moth needs to recognize the female-released sex pheromone among a complex background of odours which can also have a meaning for it
Moths can be trained to extend their proboscis in response to an odour
Moths can be trained to extend their proboscis in response to an odour, M. Renou©UMR7618
  • To study and model how the quality, intensity and time pattern of olfactory signals are encoded in the peripheral and central nervous system.
  • To decipher and model the signalling pathway of the olfactory transduction.
  • To study the mechanisms underlying plasticity linked to the physiological state.
  • To analyse interactions between odorants, in particular between pheromone and volatile plant compounds.
  • To better estimate the role of the olfactory environment in the modulation of long distance attraction in an applied perspective.
modèle de la cascade de transduction olfactive
Model of the insect transduction cascade – P. Lucas©UMR7618

Team publications

Only applies to publications from 2017 to present. To see all the publications go to the Publications page.
RéférenceDOI et liens HALJournal
Murmu M.S.^, Hanoune J.°, Choi A.°, Bureau V.°, Renou M.*, Dacher M.*, Deisig N.*, Modulatory effects of pheromone on olfactory learning and memory in moths. Journal of Insect Physiology, J Insect Physiol 127, 104159.10.1016/j.jinsphys.2020.104159
🔗 pdf
Journal of Insect Physiology
Levakova M., Kostal L., Monsempès C. *, Lucas P. *, Kobayashi R. (2019) Adaptive integrate-and-fire model reproduces the dynamics of olfactory receptor neuron responses in moth. J. R. Soc. Interface 16:20190246. 
🔗 pdf
J. R. Soc. Interface
Jacob V. ^, Monsempès C. *, Rospars J.-P. *, Masson J.-B., Lucas P. * (2017) Olfactory coding in the turbulent realm. PLoS Comput. Biol. 13(12):e1005870.
🔗 pdf
PLoS Comput. Biol.
Machon J.~, Lucas P.*, Ravaux J., Zbinden M. (2018) Comparison of Chemoreceptive Abilities of the Hydrothermal Shrimp Mirocaris fortunata and the Coastal Shrimp Palaemon elegans. Chem Senses 7:489–501.
Chemical Senses
Aviles A. ~, Boulogne I.^, Durand N.^, Maria A.*, Cordeiro A.°, Bozzolan F.*, Goutte A., Alliot F., Dacher M.*, Renault D., Maïbèche M.*, Siaussat D.* 2019 Effects of DEHP on post-embryonic development, nuclear receptor expression, metabolite and ecdysteroid concentrations of the moth Spodoptera littoralis. Chemosphere 215, 725-738.               
🔗 pdf
Levakova M., Kostal L., Monsempès C. *, Jacob V. ^, Lucas P. * (2018) Moth olfactory receptor neurons adjust their encoding efficiency to temporal statistics of pheromone fluctuations. PLoS Comput. Biol. 14(11): e1006586.
🔗 pdf
PLoS Comput. Biol.
Langlois L., Dacher M.*, Nugent F. (2018). Dopamine receptor activation is required for GABAergic spike timing-dependent plasticity in the ventral tegmental area. Front Syn Neurosci, 10: 32.​10.3389/fnsyn.2018.00032
🔗 pdf
frontiers in synaptic neuroscience
Chapuy C.°~, Ribbens L., Renou M.*, Dacher M.*, Armengaud C. (2019) Thymol affects congruency between olfactory and gustatory stimuli in bees. Sci Rep, 9: 7752.10.1038/s41598-019-43614-8
🔗 pdf
scientific reports
Maria A.*, Malbert-Colas A~. Braman V.^, Dacher M.*, Chertemps T.*, Maïbèche M.*, Blais C.*, Siaussat D.* 2019 Effects of Bisphenol A on post-embryonic development of the cotton pest, Spodoptera littoralis. Chemosphere 235, 616-625.10.1016/j.chemosphere.2019.06.073
Conchou L. ^, Lucas P. *, Meslin C. *, Proffit M., Staudt M., Renou M. * (2019) Insect Odorscapes: From Plant Volatiles to Natural Olfactory Scenes.Front. Physiol. 10:972.10.3389/fphys.2019.00972
🔗 pdf
Front. Physiol.
Aviles A.~, Cordeiro A.°, Maria A.*, Bozzolan F.*, Boulogne I.^, Dacher M.*, Goutte A.°, Alliot F., Maibeche M.*, Massot M.*, Siaussat D.* (2020) Effects of DEHP on ecdysteroid pathway, sexual behaviour and offspring of the moth Spodoptera littoralis. Hormones Behav, 125: 104808.10.1016/j.yhbeh.2020.104808Hormones Behav
Hostachy C.°^, Couzi P.*, Hanafi-Portier M.°, Portemer G.°, Halleguen A.°, Murmu M.^, Deisig N.*, Dacher M.*, 2019. Responsiveness to sugar solutions in the moth Agrotis ipsilon: parameters affecting proboscis extension. Frontiers in Physiology, 10: 1423.10.3389/fphys.2019.01423
🔗 pdf
frontiers in physiology
Hostachy C.^°, Couzi P.*, Portemer G.°, Hanafi M.°, Murmu M.^, Deisig N.*, Dacher M.* (2019)Exposure to conspecific and heterospecific sex-pheromones modulates gustatory habituation in the moth Agrotis ipsilon. Frontiers in Physiology, 10: 1518.10.3389/fphys.2019.01518
🔗 pdf
frontiers in physiology
Fraichard S., Legendre A., Lucas P., Chauvel I., Faure P., Artur Y., Neiers F., Briand L., Ferveur J.-F., Heydel J.-M. (2020) Modulation of sex pheromone discrimination by the UDP-glycosyltransferase Ugt36E1 in Drosophila melanogaster. Genes 11(3). DOI: 10.3390/genes11030237
🔗 pdf
Hoffmann A.°, Bourgeois T.*, Munoz A.°, Anton S., Gevar J.*, Dacher M.*, Renou M.* (2020) A plant volatile alters the perception of sex pheromone blend ratios in a moth. J Comp Physiol A, 206, 553-570.10.1007/s00359-020-01420-yjournal of comparative physiology A
Renou M.*, Anton S. (2020) Insect olfaction in a complex and changing world. Current Opinion in Insect Science, 42:xx-yy.10.1016/j.cois.2020.04.004Current opinion in insect science
​Pawson S. M., Kerr J. L., O’Connor B., Lucas P.*, Martinez D., Allison J. D., Strand T. M. (2020) Light weight portable electroantennography device as a future tool for applied chemical ecology. J. Chem. Ecol. 46 :557-566.
Journal of Chemical Ecology
​Pannequin R., Jouaiti M., Boutayeb M., Lucas P.*, Martinez D. (2020) Lab-on-cables: Automatic tracking of free-flying insects. Science Robotics 5(43):eabb2890. DOI: 10.1126/scirobotics.abb2890
🔗 pdf
Science Robotics
Bozzolan F*, Durand N^, Demondion E*, Bourgeois T*, Gassias E, Debernard S*.Evidence for a role of oestrogen receptor-related receptor in the regulation of male sexual behaviour in the moth Agrotis ipsilon.Insect Mol Biol26(4):403-41310.1111/imb.12303
Insect Mol Biol
🔗 All publications of iEES Paris

Team members

Nom PrénomCorpsEmployeurAdresseTéléphoneMél
Institute of Physiology CAS
INRA de Versailles
bâtiment 1 – RDC étage – bureau : 17
(+33) 01 30 83 37 37
CRINRAEINRA de Versailles
bâtiment 1 – Sous-sol étage – bureau : 17
(+33) 01 30 83 37 37
COUZI PhilippeTINRAECampus Pierre et Marie Curie
Tour 44-45 – 3e étage – bureau : 320
(+33) 06 67 67 06
DACHER MatthieuMCSorbonne universitéCampus Pierre et Marie Curie
Tour 44-45 – 3e étage – bureau : 310
(+33) 01 44 27 65
Sorbonne université
Campus Pierre et Marie Curie
Tour 44-45 – 3e étage – bureau : 308
(+33) 01 44 27 38 39
bâtiment 1 – RDC – bureau : 04
(+33) 01 30 83 31
GEVAR JérémyIEINRAEINRA de Versailles
bâtiment 1 – RDC – bureau : 4
(+33) 01 30 83 31
LUCAS PhilippeDRINRAEINRA de Versailles
bâtiment 1 – RDC – bureau : 10C
(+33) 01 30 83 37
MONSEMPES ChristelleAIINRAEINRA de Versailles
bâtiment 1 – RDC – bureau : 11A
(+33) 01 30 83 31
RENOU MichelDRINRAEINRA de Versailles
bâtiment 1 – RDC – bureau : 00
(+33) 01 30 83 32

🔗 Organization chart