Neuroethology of olfaction "NeO" Team - iEES Paris

Our experimental and modelling studies aim at understanding the mechanisms involved in the recognition of the olfactory signal and its translation in a behavioural response adapted to the environment and the physiological state of insects.
These studies concern the processes of sensory coding, from the chemo-electrical transduction in the olfactory receptor neurones to its integration in the central nervous system by the neuronal network of the antennal lobe as well as the resulting oriented locomotor response.

We also analyse how insects respond to specific signals in a complex sensory environment (interactions of pheromones and plant volatile compounds) and the mechanisms of the modulation of the olfactory response, notably by steroid hormones involved in development.

carte d’activité en imagerie calcique du lobe antennaire à un composé volatil de plante et à la phréromone
Calcium activity maps in the antennal lobe in response to a volatile plant compound and to the sex pheromone – N. Deisig©UMR7618

We use complementary approaches including:

  • anatomy (quantitative neuroanatomy, intracellular stainings),
  • molecular biology (cloning, in situ hybridization, RNA interference, heterologous expression),
  • electrophysiology (extracellular, patch clamp in vivo and in vitro),
  • imaging (calcium imaging), ethology (olfactometry, trajectometry, learning assays),
  • biochemistry (immuno-dosage of steroids), physico-chemistry (gas chromatography coupled to behaviour)
  • and modelling (statistical analyses, computer simulation, robotics) to study the functioning of neurones and neurone networks and modifications of this functioning (global change, pesticides, etc.).

Various olfactometers, locomotion compensators and a wind tunnel are used to record and analyse insect behavior in response to odour signals.


Moth olfactory receptor neurones in primary culture
Moth olfactory receptor neurones in primary culture, P. Lucas©UMR7618

Patch clamp from an olfactory receptor neurone in vitro
Patch clamp from an olfactory receptor neurone in vitro, P. Lucas ©UMR7618
Reconstruction of the antennal lobe from a male moth
Reconstruction of the antennal lobe from a male moth S. Anton©UMR7618 S. Anton©UMR7618
Our studies are carried out on three species of phytophagous insects.

Our main model is the moth sex pheromone communication with two Noctuidae Spodoptera littoralis and Agrotis ipsilon, because of its sensitivity, specificity and stereotyped behavioural responses involved.
Responses to the pheromone in interaction with plant volatiles are also studied in the context of an applied project, on the invasive weevil Rhynchophorus ferrugineus.

A male moth needs to recognize the female-released sex pheromone among a complex background of odours which can also have a meaning for it
A male moth needs to recognize the female-released sex pheromone among a complex background of odours which can also have a meaning for it
Moths can be trained to extend their proboscis in response to an odour
Moths can be trained to extend their proboscis in response to an odour, M. Renou©UMR7618
Objectives
  • To study and model how the quality, intensity and time pattern of olfactory signals are encoded in the peripheral and central nervous system.
  • To decipher and model the signalling pathway of the olfactory transduction.
  • To study the mechanisms underlying plasticity linked to the physiological state.
  • To analyse interactions between odorants, in particular between pheromone and volatile plant compounds.
  • To better estimate the role of the olfactory environment in the modulation of long distance attraction in an applied perspective.
modèle de la cascade de transduction olfactive
Model of the insect transduction cascade – P. Lucas©UMR7618
 

Team news

Team publications

Only applies to publications from 2017 to present. To see all the publications go to the Publications page.
RéférenceLiensJournal
​SOKOLOWSKI M., BOTTET G., DACHER M.* (2024) Measuring honey bee feeding rhythms with the Beebox, a platform for nectar foraging insects. Physiol Behav, in press.
 
https://doi.org/10.1016/j.physbeh.2024.114598
🔗 HAL
🔗 pdf
Physiology & Behavior
Maria A.*, Malbert-Colas A~. Braman V.^, Dacher M.*, Chertemps T.*, Maïbèche M.*, Blais C.*, Siaussat D.* 2019 Effects of Bisphenol A on post-embryonic development of the cotton pest, Spodoptera littoralis. Chemosphere 235, 616-625.10.1016/j.chemosphere.2019.06.073
🔗 HAL
Chemosphere
Hoffmann A.°, Bourgeois T.*, Munoz A.°, Anton S., Gevar J.*, Dacher M.*, Renou M.* (2020) A plant volatile alters the perception of sex pheromone blend ratios in a moth. J Comp Physiol A, 206, 553-570.10.1007/s00359-020-01420-y
🔗 HAL
JOURNAL OF COMPARATIVE PHYSIOLOGY A- NEUROETHOLOGY SENSORY NEURAL AND BEHAVIORAL PHYSIOLOGY
Fraichard S., Legendre A., Lucas P., Chauvel I., Faure P., Artur Y., Neiers F., Briand L., Ferveur J.-F., Heydel J.-M. (2020) Modulation of sex pheromone discrimination by the UDP-glycosyltransferase Ugt36E1 in Drosophila melanogaster. Genes 11(3). 10.3390/genes11030237
🔗 HAL
🔗 pdf
Genes
Hostachy C.^°, Couzi P.*, Portemer G.°, Hanafi M.°, Murmu M.^, Deisig N.*, Dacher M.* (2019)Exposure to conspecific and heterospecific sex-pheromones modulates gustatory habituation in the moth Agrotis ipsilon. Frontiers in Physiology, 10: 1518.10.3389/fphys.2019.01518
🔗 HAL
🔗 pdf
Frontiers in Physiology
Hostachy C.°^, Couzi P.*, Hanafi-Portier M.°, Portemer G.°, Halleguen A.°, Murmu M.^, Deisig N.*, Dacher M.*, 2019. Responsiveness to sugar solutions in the moth Agrotis ipsilon: parameters affecting proboscis extension. Frontiers in Physiology, 10: 1423.10.3389/fphys.2019.01423
🔗 HAL
🔗 pdf
Frontiers in Physiology
Renou, M*, Les insectes ingénieurs. 5. Odeurs et biomimétisme. Insectes,195: 17-21.
🔗 pdf
Insectes
Conchou L. ^, Lucas P. *, Meslin C. *, Proffit M., Staudt M., Renou M. * (2019) Insect Odorscapes: From Plant Volatiles to Natural Olfactory Scenes.Front. Physiol. 10:972.10.3389/fphys.2019.00972
🔗 HAL
🔗 pdf
Frontiers in Physiology
Levakova M., Kostal L., Monsempès C. *, Lucas P. *, Kobayashi R. (2019) Adaptive integrate-and-fire model reproduces the dynamics of olfactory receptor neuron responses in moth. J. R. Soc. Interface 16:20190246. 10.1098/rsif.2019.0246
🔗 HAL
🔗 pdf
Journal of The Royal Society Interface
Chapuy C.°~, Ribbens L., Renou M.*, Dacher M.*, Armengaud C. (2019) Thymol affects congruency between olfactory and gustatory stimuli in bees. Sci Rep, 9: 7752.10.1038/s41598-019-43614-8
🔗 HAL
🔗 pdf
Scientific Reports
​Pawson S. M., Kerr J. L., O’Connor B., Lucas P.*, Martinez D., Allison J. D., Strand T. M. (2020) Light weight portable electroantennography device as a future tool for applied chemical ecology. J. Chem. Ecol. 46 :557-566. 10.1007/s10886-020-01190-6
🔗 HAL
Journal of Chemical Ecology
Langlois L., Dacher M.*, Nugent F. (2018). Dopamine receptor activation is required for GABAergic spike timing-dependent plasticity in the ventral tegmental area. Front Syn Neurosci, 10: 32.​10.3389/fnsyn.2018.00032
🔗 HAL
🔗 pdf
Frontiers in Synaptic Neuroscience
Levakova M., Kostal L., Monsempès C. *, Jacob V. ^, Lucas P. * (2018) Moth olfactory receptor neurons adjust their encoding efficiency to temporal statistics of pheromone fluctuations. PLoS Comput. Biol. 14(11): e1006586.10.1371/journal.pcbi.1006586
🔗 HAL
🔗 pdf
PLoS Computational Biology
Aviles A. ~, Boulogne I.^, Durand N.^, Maria A.*, Cordeiro A.°, Bozzolan F.*, Goutte A., Alliot F., Dacher M.*, Renault D., Maïbèche M.*, Siaussat D.* 2019 Effects of DEHP on post-embryonic development, nuclear receptor expression, metabolite and ecdysteroid concentrations of the moth Spodoptera littoralis. Chemosphere 215, 725-738.                ​10.1016/j.chemosphere.2018.10.102
🔗 HAL
🔗 pdf
Chemosphere
Chatterjee A*, Lamaze A, De J, Mena W, Chélot E, Martin B, Hardin P, Kadener S, Emery P, Rouyer F.​ Reconfiguration of a Multi-oscillator Network by Light in the Drosophila Circadian Clock. Curr Biol. 2018 Jul 9;28(13):2007-2017.e4.
10.1016/j.cub.2018.04.064
🔗 HAL
current biology
Machon J.~, Lucas P.*, Ravaux J., Zbinden M. (2018) Comparison of Chemoreceptive Abilities of the Hydrothermal Shrimp Mirocaris fortunata and the Coastal Shrimp Palaemon elegans. Chem Senses 7:489–501. 10.1093/chemse/bjy041
🔗 HAL
Chemical Senses
Jacob V. ^, Monsempès C. *, Rospars J.-P. *, Masson J.-B., Lucas P. * (2017) Olfactory coding in the turbulent realm. PLoS Comput. Biol. 13(12):e1005870. 10.1371/journal.pcbi.1005870
🔗 HAL
🔗 pdf
PLoS Computational Biology
Bozzolan F*, Durand N^, Demondion E*, Bourgeois T*, Gassias E, Debernard S*.Evidence for a role of oestrogen receptor-related receptor in the regulation of male sexual behaviour in the moth Agrotis ipsilon.Insect Mol Biol26(4):403-41310.1111/imb.12303
🔗 HAL
Insect Molecular Biology
Renou M.*, Anton S. (2020) Insect olfaction in a complex and changing world. Current Opinion in Insect Science, 42:xx-yy.10.1016/j.cois.2020.04.004
🔗 HAL
Current Opinion in Insect Science
​Pannequin R., Jouaiti M., Boutayeb M., Lucas P.*, Martinez D. (2020) Lab-on-cables: Automatic tracking of free-flying insects. Science Robotics 5(43):eabb2890.10.1126/scirobotics.abb2890
🔗 HAL
🔗 pdf
Science Robotics
​​Force E.~, Suray C.*, Dacher M.*, Debernard S.*, (2024). Effect of Adult Male Diet on Fertilization and Hatching in an Insect. microPublication Biology.
https://doi.org/10.17912/micropub.biology.001074
🔗 HAL
🔗 pdf
microPublication Biology
​​​De J, Chatterjee A*.​ (2021) Perception of Daily Time: Insights from the Fruit Flies. Insects. 2021 Dec 21;13(1):310.3390/insects13010003
🔗 HAL
🔗 pdf
insects
Force E.~, Sokolowski M., Suray C.*, Debernard S.*, Chatterjee A.*, Dacher M.* (2023), Regulation of Feeding Dynamics by the Circadian Clock, Light and Sex in an Adult Nocturnal Insect, Frontiers in Physiology, 14:1304626
https://doi.org/10.3389/fphys.2023.1304626Frontiers in Physiology
​Force E.~, Couzi P.*, Dacher M.*, Debernard S.* (2023), Diet Impacts the Reproductive System’s Maturation in the Male Moth Agrotis ipsilon (Noctuidae, Lepidoptera), J Insect Physiol, 148:104532.
https://doi.org/10.1016/j.jinsphys.2023.104532
🔗 HAL
J Insect Physiol
Li Z.~, Capoduro R.^, Zhang S.~, Sun D., Lucas P.*, Dabir-Moghaddam D.^, François M.C.*, Liu Y., Wang G., Jacquin-Joly E.*, Montagné N.*, Meslin M.*(2023) A tale of two copies: evolutionary trajectories of moth pheromone receptors. Proc Natl Acad Sci USA 120 (20)https://doi.org/10.1073/pnas.2221166120
🔗 HAL
Proceedings of the National Academy of Sciences of the United States of America
​​​​​​​​​​​​​​​Aguilar P., Bourgeois T., Maria A.*, Couzi P.*, Demondion E., Bozzolan F.*, Gassias E., Force E.~​, Debernard S.* (2023), Methoprene-tolerant and Krüppel homolog 1 are actors of juvenile hormone-signaling controlling the development of male sexual behavior in the moth Agrotis ipsilon, Horm Behav, 150:105330https://doi.org/10.1016/j.yhbeh.2023.105330
🔗 HAL
🔗 pdf
Horm Behav
Zheng Y.~,  Cabassa-Hourton C.*,  Planchais S.*,  Crilat E.*,  Clément G., Dacher M.*,  Durand N.~, Bordenave-Jacquemin M.*, Guivarc’h A.*, Dourmap C.~,  Carol P.*, Lebreton S.*, Savouré A.* (2022). Pyrroline-5-carboxylate dehydrogenase is an essential enzyme for proline dehydrogenase function during dark-induced senescence in Arabidopsis thaliana. Plant Cell and Environment. Online ahead of print.​10.1111/pce.14529
🔗 HAL
Plant Cell and Environment
​Vandroux P.°, Li Z.~, Capoduro R.^, François M-C.*, Renou M.*, Montagné N.*, Jacquin-Joly E.* (2022) Activation of pheromone-sensitive olfactory neurons by plant volatiles in the moth Agrotis ipsilon does not occur at the level of the pheromone receptor protein. Front. Ecol. Evol., 10:103525210.3389/fevo.2022.1035252Frontiers in Ecology and Evolution
Renou M.* (2022) Is the evolution of insect odorscapes under anthropic pressures a risk for herbivorous insect invasions? Current Opinion in Insect Science. 52: 100926​10.1016/j.cois.2022.100926Current Opinion in Insect Science
​Lucas P.*, Anton, S. (2021) Editorial: Invertebrate neurobiology: Sensory Systems, Information Integration, Locomotor- and Behavioral output. Front. Physiol. 12:80752110.3389/fphys.2021.807521
🔗 HAL
Frontiers Physiology
Aviles A.~, Cordeiro A.°, Maria A.*, Bozzolan F.*, Boulogne I.^, Dacher M.*, Goutte A.°, Alliot F., Maibeche M.*, Massot M.*, Siaussat D.* (2020) Effects of DEHP on ecdysteroid pathway, sexual behaviour and offspring of the moth Spodoptera littoralis. Hormones Behav, 125: 104808.10.1016/j.yhbeh.2020.104808
🔗 HAL
🔗 pdf
Hormone and Behaviour
Frat L~, Chertemps T*, Pesce E, Bozzolan F*, Dacher M*, Planelló R, Herrero O, Llorente L, Moers D, Siaussat D*. Single and mixed exposure to cadmium and mercury in Drosophila melanogaster: Molecular responses and impact on post-embryonic development. Ecotoxicol Environ Saf. 2021 May 27;220:112377.10.1016/j.ecoenv.2021.112377
🔗 HAL
🔗 pdf
ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY
​Conchou, L^.; Lucas, P*.; Deisig, N*.; Demondion, E.*; Renou, M*. Effects of Multi-Component Backgrounds of Volatile Plant Compounds on Moth Pheromone Perception. Insects 2021, 12, 409.10.3390/insects12050409
🔗 HAL
Insects
​Haouzi, M., Gévar, J*., Khalil, A., & Darrouzet, E. (2021). Nest structures display specific hydrocarbon profiles: insights into the chemical ecology of the invasive yellow-legged hornet Vespa velutina nigrithorax. Chemoecology, 1-12. 10.1007/s00049-021-00343-7
🔗 HAL
🔗 pdf
Chemoecology
Gassias E, Maria A*, Couzi P*, Demondion E*, Durand N, Bozzolan F*, Aguilar P, Debernard S*. (2021) Involvement of Methoprene-tolerant and Krüppel homolog 1 in juvenile hormone-signaling regulating the maturation of male accessory glands in the moth Agrotis ipsilon. Insect Biochem Mol Biol. 2021 May;132:103566.10.1016/j.ibmb.2021.103566INSECT BIOCHEMISTRY AND MOLECULAR
BIOLOGY
​RENOU, Michel* ; SORDELLO, Romain ; REYJOL, Yorick, La biologie de la conservation doit-elle prendre en compte les paysages odorants ?, Science Eaux & Territoires10.14758/SET-REVUE.2021.HS.03Science Eaux & Territoires
Renou, M. ​Mesurer le comportement olfactif des insectes.Insectes, 199:11-15Insectes
Murmu M.S.^, Hanoune J.°, Choi A.°, Bureau V.°, Renou M.*, Dacher M.*, Deisig N.*, Modulatory effects of pheromone on olfactory learning and memory in moths. Journal of Insect Physiology, J Insect Physiol 127, 104159.10.1016/j.jinsphys.2020.104159
🔗 HAL
🔗 pdf
Journal of Insect Physiology
Gévar, J*., Bagnères, A. G., Christidès, J. P., Darrouzet, E. (2017). Chemical heterogeneity in inbred European population of the invasive hornet Vespa velutina nigrithorax. Journal of Chemical Ecology, 43(8), 763-777. 10.1007/s10886-017-0874-4
🔗 HAL
🔗 pdf
Journal of Chemical Ecology
🔗 All publications of iEES Paris

Team members

Nom PrénomCorpsEmployeurAdresseTéléphoneMél
CHATTERJEE AbhishekCRINRAEINRAE de Versailles
bâtiment 1 – Sous-sol étage – bureau : 17
(+33) 01-30-83-37-37abhishek.chatterjee@inrae.fr
DACHER MatthieuMCS-UCampus Pierre et Marie Curie – Paris 5e
Tour 44-45 – 3e étage – bureau : 310
(+33) 01-44-27-65-87matthieu.dacher@sorbonne-universite.fr
DEBERNARD StéphaneMCS-UCampus Pierre et Marie Curie – Paris 5e
Tour 44-45 – 3e étage – bureau : 308
(+33) 01-44-27-38-39stephane.debernard@sorbonne-universite.fr
FABRE CarolineCDD ChercheuseINRAE, MSCA fellowINRAE de Versailles
bâtiment 1 – RDC – bureau : 6C
caroline.fabre@inrae.fr
FORCE EvanDoctorantUniv. Paris-SaclayCampus Pierre et Marie Curie – Paris 5e
Tour 44-45 – 3e étage – bureau : 318
evan.force@universite-paris-saclay.fr
GHOSH SagnikDoctorantUniv. Paris-SaclayINRAE de Versailles
bâtiment 1 – RDC – bureau : 10
sagnik.ghosh@inrae.fr
LUCAS PhilippeDRINRAEINRAE de Versailles
bâtiment 1 – RDC – bureau : 10C
(+33) 01-30-83-37-37philippe.lucas@inrae.fr

🔗 Organization chart

🔗Directory